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Transonic Helicopter Noise
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Helicopter noise is an increasingly important issue, and at large forward-flight speeds transonic rotor noise
is a major contributor. A method for predicting transonic rotor noise, which is more computationally efficient
than previous methods and which furthermore offers physical insight into the noise generation, is developed.
These benefits combine to make it of potential use to helicopter rotor designers. The permeable surface form of
the Ffowcs Williams–Hawkings (FW-H) equation is used to express the sound field in terms of a distribution of
monopole and dipole sources over a permeable control surface and a distribution of quadrupole sources over the
volume outside of this surface. By choosing the control surface to enclose the transonic flow regions, the noise
from the quadrupole distribution becomes negligible. Only the more straightforward surface sources then need
be considered, making the acoustic approach computationally efficient. By locating the control surface close to
the blade subject to enclosing the transonic flow regions, efficiency in the computational-fluid-dynamics (CFD)
approach is also attained. To perform noise predictions, an Euler CFD method to calculate the flowfield was
combined with an acoustic method incorporating the retarded time formulation of the FW-H equation. Several
rotor blades in hover and steady forward flight were considered, all of which involved transonic flows but for which
shock delocalization did not occur. The predictions showed very good agreement with experimental data and with
predictions obtained using more computationally intensive methods.

Nomenclature
A = J |∇y f |/|∇η f |
c = speed of sound in undisturbed flow, ms−1

f = f = 0 defines location of the control surface S
g = t − τ − r(τ )/c
H = Heaviside step function
J = Jacobian of y → η coordinate change
Li = pi j n j + ρui (un − vn)
M = magnitude of M
M = Mach-number vector
Ma = magnitude of advancing-tip Mach number
M f = magnitude of forward-flight Mach number
MH = magnitude of rotational-tip Mach number
n = unit vector normal to control surface
p = absolute pressure, Pa
pi j = compressive stress tensor, Pa
Rtip = radius of blade tip (= blade span), m
r(τ ) = |r(τ )|, magnitude of radiation vector, m
r(τ ) = |x(t) − y(τ )|, radiation vector, m
r0 = distance from rotor hub to observer, m
S = control surface
Ti j = Lighthill stress tensor = ρui u j + pi j − c2ρ ′δi j

t = observer time, s
Ui = (1 − ρ/ρ0)vi + ρ/ρ0ui

u = fluid velocity, ms−1

v = blade/control surface velocity, ms−1

x = observer position, m
y = source position, m
α = blade pitch angle, deg
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β = blade cone angles, deg
δ = Dirac delta function
ε = rotor disk tilt angle, deg
η = coordinates in which S is stationary
µ = helicopter advance ratio, = M f /MH

ρ = density, kgm−3

τ = source time, s
τ∗ = retarded time, = t − r(τ∗)/c, s
ψ = azimuth angle, deg
�2 = wave operator = (1/c2)(∂2/∂t2) − ∇2

Subscripts

n = component in surface normal direction
r = component in radiation direction
0 = value in undisturbed fluid

Superscripts

- = generalized variable
′ = fluctuation about undisturbed level

Introduction

I N recent years, helicopter noise has become an increasingly im-
portant issue. This is due to factors such as environmental accept-

ability of ground noise levels, passenger comfort, and, for military
helicopters, acoustic detectability. At large forward-flight speeds,
shock-associated rotor noise is a major noise source. Despite this,
there is presently no method of predicting it that is both sufficiently
physically insightful and fast to be of full benefit in the rotor design
process.

Rotor noise is most efficiently predicted using integral methods
that separate the computation of the noise sources and the noise
propagation. The aerodynamic field around the blade is evaluated
using an unsteady computational fluid dynamics (CFD) solver, and
an integral formulation is used to describe how the sound propagates
to the far field. The two most commonly used integral methods
are the Kirchhoff method and Ffowcs Williams–Hawkings (FW-H)
equation.

The Kirchhoff method involves integration over a surface located
in the linear flow region.1−3 It has the advantage of not requiring
any volume integration, but its drawback for transonic flows is that
the linear flow region is typically far from the blade,3,4 meaning that
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obtaining a CFD solution which remains accurate and well resolved
at the surface is computationally intensive. Hence, although the
Kirchhoff method has been used to predict transonic rotor noise
accurately,3,5−7 the method is too time consuming for use by de-
signers. Furthermore, it does not provide any physical insight into
how the noise is generated.

The FW-H equation expresses the noise in terms of a distribu-
tion of monopole and dipole sources over a control surface and
a distribution of quadrupole sources over the volume outside the
surface.1 When the control surface is chosen to coincide with the
blade surface, these distributions represent the noise due to blade
thickness, blade loading and flow non-linearities/entropy variations
respectively. It has been shown that the noise generated by the vol-
ume quadrupole distribution is negligible for a subsonic volume
of fluid but is significant in regions of transonic flow.8−10 It is
generated mainly at the shock surfaces but also near the leading
edge of the blade toward the blade tip. Calculating the noise gen-
erated by this quadrupole distribution is both time consuming and
numerically difficult. Although methods of approximating it exist,
there is no satisfactory method of performing the volume integration
exactly.

To predict shock-associated noise while avoiding the need to com-
pute the problematic quadrupole term, the FW-H equation can be
applied to a permeable control surface that encloses the blade but is
not coincident with it. If the control surface is also chosen to enclose
all transonic regions of flow, the flow volume outside of the control
surface is fully subsonic, and the noise generated by the quadrupole
distribution outside of the surface is negligible. Thus by moving
the control surface outward, the effect of the quadrupoles within
it can be accounted for by the surface source terms. Furthermore,
the transonic region is always well defined, and the surface source
terms continue to have physical meaning; the monopole distribution
is related to mass flux through the surface and the dipole distribu-
tion to momentum flux. Also, by comparing the prediction obtained
using the permeable control surface to that obtained using the blade
surface, the thickness, loading, and shock-associated contributions
to the overall noise can be identified.

The permeable surface form of the FW-H equation has recently
been used to successfully predict transonic rotor noise.7,11 How-
ever, in these cases the permeable control surfaces were generally
larger than necessary to enclose just the transonic flow region, thus
resulting in more computational effort than was necessary. To take
full advantage of the permeable surface form, the surface should
be as small as possible while enclosing all transonic flow regions.
This ensures that the quadrupoles responsible for significant noise
generation are accounted for, while minimizing the computational
effort needed to obtain the surface information.

Acoustic Methodology
Background: The Permeable Surface Form of the FW-H Equation

The permeable surface form of the Ffowcs Williams–Hawkings
equation follows from the fluid conservation laws in the same way
as the more familiar impermeable surface form.1

A permeable control surface S, which is defined by the equation
f (x, t) = 0, is considered. S encloses all solid boundaries and
moves with velocity v (Fig. 1).

Generalized flow variables, which hold over infinite space, are
defined (denoted by an overbar). Outside the surface S, the gener-
alized variables are equal to the real flow variables, whereas inside
the surface they have the value zero. Where a differential operator
acts on a generalized function or variable, it should be assumed
that generalized differentiation is implied.12,13 The continuity and
momentum equations valid over all space are

H( f )

[
∂ρ ′

∂t
+ ∂(ρui )

∂xi

]
= 0 (1)

H( f )

[
∂(ρui )

∂t
+ ∂

∂x j
(pi j + ρui u j )

]
= 0 (2)

Fig. 1 Permeable control surface.

which can be rearranged to give

∂ρ ′

∂t
+ ∂(ρui )

∂xi
= [ρ0un + ρ ′(un − vn)]δ( f )|∇x f | (3)

∂(ρui )

∂t
+ ∂

∂x j
(pi j + ρui u j ) = [pi j n j + ρui (un − vn)]δ( f )|∇x f |

(4)

Following the notation of di Francescantonio,11 new variables
Ui and Li are introduced to simplify the algebra. These represent
mass-like and momentum fluxes through S.

Ui = (1 − ρ/ρ0)vi + ρ/ρ0ui , Li = pi j n j + ρui (un − vn)

(Lm = Li Mi ) (5)

By subtracting the divergence of Eq. (4) from the time derivative
of Eq. (3), an inhomogeneous wave equation is obtained:

c2�2ρ ′(x, t) = − ∂

∂xi
[Liδ( f )|∇x f |]

+ ∂

∂t
[ρ0Unδ( f )|∇x f |] + ∂2Ti j

∂xi∂x j
(6)

This is the equation governing the generation and propagation
of sound and is the differential form of the FW-H equation. On
the right-hand side, surface monopole, surface dipole, and volume
quadrupole distributions act as acoustic sources, while on the left the
wave operator describes the propagation of sound from the sources
to the observer. Ti j is the generalized Lighthill stress tensor, which
has value Ti j = ρui u j + pi j − c2ρ ′δi j outside of the surface S. Be-
cause S is chosen to enclose the blade and all transonic flow regions,
Ti j is negligible outside of S, and so the last term on the right can
be neglected. This is consistent with the observation that for blades
around which the flow is entirely subsonic (up to tip Mach num-
bers of approximately 0.8) the total noise contribution from Ti j is
negligible.14,15

The equation is valid in all of three-dimensional space, owing to
the fact that generalized variables have been used. The integral form
can therefore be obtained by convolving with the free space, three-
dimensional Green’s function for the wave equation, which has the
well known form δ(t − |x|/c)/(4π |x|) (Ref. 16). The substitution
p′ = c2ρ ′ can be made on the left, requiring linearity and no entropy
variation at the observer location (although no such restriction is
placed on the flow at the control surface).

p′(x, t) = − ∂

∂xi

∫ +∞

−∞

Liδ( f )δ(g)|∇y f |
4πr

d3y dτ

+ ∂

∂t

∫ +∞

−∞

ρ0Unδ( f )δ(g)|∇y f |
4πr

d3y dτ (7)

where r = |x − y| and g = t − τ − r/c.
A coordinate change from fixed coordinates y to coordinates that

move with the control surface η allows the source strengths to be
considered in a frame moving with the surface. The Jacobian for the
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coordinate change is J and represents the ratio of volume elements
in the η and y spaces:

p′(x, t) = − ∂

∂xi

∫ +∞

−∞

Liδ( f )δ(g)|∇y f |J
4πr

d3η dτ

+ ∂

∂t

∫ +∞

−∞

ρ0Unδ( f )δ(g)|∇y f |J
4πr

d3η dτ (8)

Equation (8) is the most general integral form of the permeable
FW-H equation. To implement it numerically, it is necessary to in-
tegrate the two delta functions. The method of performing these
integrations determines which formulation of the FW-H equation is
used.

Numerical Implementation of the FW-H Equation
The various possible formulations have previously been discussed

in some detail by Brentner.17 The retarded time formulation is
conceptually the most physical and is computationally relatively
straightforward to implement. Although it has been demonstrated
that it suffers from limitations at tip speeds approaching or exceed-
ing the speed of sound,18 such conditions are associated with the
noisy phenomenon of shock delocalization, and in practice heli-
copters do not operate in this regime. These high-speed limitations
are therefore less important for design applications, and the retarded
time formulation is a suitable formulation on which to be basing a
realistic transonic noise prediction method.

To obtain the retarded time formulation from Eq. (8), integra-
tion over τ is first performed: because the surface S is fixed in
η coordinates, the δ( f ) term is unaffected by this. Noting that
|∂g/∂τ | = |1 − Mr | and integrating over one space dimension using
the remaining delta function gives

p′(x, t) = − ∂

∂xi

∫
S

[
Li A

4πr |1 − Mr |

]
τ∗

dS(η)

+ ∂

∂t

∫
S

[
ρ0Un A

4πr |1 − Mr |

]
τ∗

dS(η) (9)

Equation (9) is the permeable surface form of the retarded
time formulation with the quadrupole term neglected. A = J |∇y f |/
|∇η f | represents the ratio of area elements in the η and y spaces. If
the surface is undistorted in motion, then A is equal to unity. τ∗ is
the retarded time, given implicitly by the relationship,

τ∗ = t − r(τ∗)/c = t − [|x(t) − y(τ∗)|]/c (10)

Sound emitted by the source at retarded time τ∗ will reach the
observer at the time of interest t . For a fixed observer position and
time and for subsonic surface motion, τ∗ can only have one value.

To express Eq. (9) in a form suitable for computation, further
manipulation is required. Numerical differentiation of the integrals
can be avoided, and the speed and accuracy of the computation
are improved if the derivatives are taken inside the integrals.15 The
∂/∂xi can be replaced using Eq. (11) [which can be inferred from
Eq. (14) in Ref. 19], and the integration surface S(η) is independent
of t so that time derivatives inside the integrals can be replaced with
∂/∂τ terms using Eq. (12):

− ∂

∂xi

∫
S

[
Qi

r |1 − Mr |

]
τ∗

dS = ∂

∂t

∫
S

[
Qiri

cr 2|1 − Mr |

]
τ∗

dS

+
∫

S

[
Qiri

r 3|1 − Mr |

]
τ∗

dS (11)

∂[Q(τ )]τ∗
∂t

=
[

1

(1 − Mr )

∂ Q(τ )

∂τ

]
τ∗

(12)

Differentiating and gathering terms together gives the following,
where Lm = Li Mi and Uṅ is the component of U in the direction of

the rate of change of the surface normal vector in η coordinates ṅ.
For a nondeforming control surface, this latter term is zero.

4πp′(x, t) =
∫

S

[
ρ0(U̇n + Uṅ)

r(1 − Mr )2

]
τ∗

dS(η)

+
∫

S

[
ρ0Un[r(∂M/∂τ)r + c(Mr − |M|2)]

r 2(1 − Mr )3

]
τ∗

dS(η)

+ 1

c

∫
S

[
L̇r

r(1 − Mr )2

]
τ∗

dS(η) +
∫

S

[
Lr − Lm

r 2(1 − Mr )2

]
τ∗

dS(η)

+ 1

c

∫
S

[
Lr [r(∂M/∂τ)r + c(Mr − |M|2)]

r 2(1 − Mr )3

]
τ∗

dS(η) (13)

Equation (13) is the form of the permeable surface retarded time
formulation that has been used for numerical computation. It has
been assumed that the control surface motion is subsonic, so that
|1 − Mr | = 1 − Mr , and that the control surface is undistorted in mo-
tion, so that A = 1 and ∂ A/∂τ = 0. It is the permeable surface form
of what is often referred to as Farassat’s formulation 1A (Ref. 15).

In the computer program used to numerically implement the re-
tarded time formulation, it is assumed that the blade is a rigid body
which can rotate but not deform. In reality, blade loading can lead to
significant blade twist and bending; it is assumed that these can be
reasonably well accounted for using modified pitch and cone angles.

Rotation matrices and an overall angular velocity vector are used
to describe the effect of the blade pitch, cone, rotation, and rotor
disk tilt angles. Positions, velocities, and accelerations in the blade-
fixed frame can then be related to values in a stationary frame by
combining the matrices/vector with rigid-body relations for rotat-
ing reference frames. A knowledge of the helicopter forward-flight
behavior is also required.

CFD Methodology
The primary interest is in shock-associated noise, and typically

the shock is present over the outer part of the span for azimuthal
angles corresponding to the blade advancing. For this phase of the
cycle in level flight, the interaction with other blade wakes and the
disturbance as a result of the presence of the fuselage and tail rotor
are likely to be small. The CFD calculations used to generate the data
for the acoustic calculations were therefore performed for a single,
oscillating, and advancing blade in an otherwise undisturbed flow.

Calculations were performed using a grid that was fixed relative
to the blade, with the problem formulated in terms of the relative
velocity as in Zhong and Qin.20 This made it relatively easy to
form smooth acoustic surfaces and to ensure good grid and solution
quality in their vicinity. In addition, it removed errors associated with
the pitching grid technique,21 which arise when reinterpolating the
solution at each time step onto a new grid position.

Although the blade is treated as a rigid body, this approach has
been used successfully to account for a wide range of blade mo-
tions, including collective and cyclic pitch variations, tilt, and con-
ing. Noninertial terms caused by the highly convoluted motion of the
blade frame appear as volumetric sources in this formulation. It is
important to handle these terms in a manner that is compatible with
the conservative nature of the discretization scheme for the equa-
tions of motion and with the nonreflective nature of the boundary
conditions. Provided this is done, however, no extra complication
appears to arise from using this accelerating frame approach.22

The governing equations were discretized in a control volume
fashion by assembling numerical fluxes across interfaces using well-
proven shock-capturing methods. The explicit characteristic Roe
scheme was implemented together with Van Leer’s variable ex-
trapolation (MUSCL) of second/third order in characteristic vari-
ables in each grid direction. Unwanted numerical oscillations were
minimized using the total-variation-diminishing (TVD) approach,
which was applied to limit the slopes of the characteristic variables
using the MinMod limiter. Slight modifications were made to the
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Fig. 2 Computational grid and pressure field around a hovering UH-
1H rotor blade at MH = 0.88.

standard MUSCL TVD variable extrapolation formulas to account
for nonuniform grid spacing.

The solid-wall rotor-blade boundary conditions were applied by
assembling the outer fluxes and eliminating the velocity component
normal to the wall. To reduce the entropy generation near the solid
boundary, more accurate estimates for fluxes adjacent to the bound-
ary were made by the introduction of symmetric fictitious points
lying inside the blade surface. At the outer boundary, a range of
nonreflecting boundary conditions were used to judge the domain
size necessary to ensure that the solution at the acoustic surfaces
was unaffected by the boundary presence.

The computational grid consisted of a series of chordwise O-type
grids stacked in the blade spanwise direction. At the blade tip the
grid was wrapped around, forming a hemispherical blade cap to
provide a uniform mesh distribution away from the blade, as shown
in Fig. 2. A modification of the flux assembling procedure was
needed for where the confluence of the blade cap radial lines and
the blade grid met to ensure that the algorithm remained uniform
and conservative. This grid strategy proved to be quite robust in
application to a number of blade geometries.

The inviscid solver was tested in a number of one- and two-
dimensional initial value problems.23,24 A simplified but effective
way of applying nonreflecting boundary conditions was also de-
veloped and tested on a number of problems involving a two-
dimensional transonic pitching blade section accelerating and de-
celerating in the freestream.25

The three-dimensional Euler solver has been validated against
several hover and forward-flight benchmarks and has been shown
to give good agreement of the calculated blade surface/near-field
pressure variations with experiments and other calculations. For ex-
ample, Fig. 3 shows the near-field comparison for a two-blade rotor
at MH = 0.7634 and µ = 0.25 at the r0/Rtip = 0.88 blade station in
forward flight.26

Figure 4 shows the CFD grid used for the more complex rotor-
blade geometries of the HELISHAPE test cases, in which the blade is
tapered, twisted, and drooped. The calculated blade surface-pressure
distributions at two outer blade sections are compared to experimen-
tal data for two azimuth angles in Fig. 5. In general the agreement is
very good, despite the fact that the numerical model ignores viscous
effects, the influence of the other blades, and variations in the blade
pitch angle as a result of elasticity.

Noise-Prediction Results
Noise predictions were performed for various rotor blades in

three-dimensional motion. In all cases, the flow in the vicinity of the
blade was transonic for at least part of the rotational cycle, although

Fig. 3 Simulation of UH-1H-type rectangular unloaded blade in for-
ward flight.

Fig. 4 Blade surface and half-domain CFD grid around the tapered
HELISHAPE blade.

tip Mach numbers were sufficiently low to avoid shock delocaliza-
tion. The CFD method was used to calculate the aerodynamic field
around the blade; the permeable surface form of the FW-H equation
was then used to generate noise predictions.

Hover
For comparison with available experimental results,27−30 an iso-

lated UH-1H blade with an aspect ratio of 13.7 was considered
in nonlifting hover. Although nonlifting hover does not represent
a realistic flight condition, these test cases have become bench-
mark tests for transonic rotor noise prediction methods and there-
fore provide a first means of validating the noise prediction ap-
proach for three-dimensional motion. They also allow parameters
such as CFD grid resolution and control surface location to be
investigated.

Because the UH-1H blade is symmetric and nonlifting test cases
were being considered, the blade pitch and cone angles were zero.
Noise calculations were performed at two different tip Mach num-
bers, 0.85 and 0.88; for both, a supersonic flow pocket formed
on the outer part of the blade and was present throughout the
rotational cycle. Previous work9,27,28 suggested that the tip Mach
number marking the onset of shock delocalization for a nonlift-
ing UH-1H blade was between 0.88 and 0.90. The tip Mach
numbers of 0.85 and 0.88 should therefore have nondelocalized
shocks, although in the MH = 0.88 case the shock will be very
close to the onset of delocalization, and hence this is a challenging
test case.

Calculations for both tip Mach numbers were performed using
two different CFD grid resolutions. The first was a 99 × 30 × 36
grid, meaning that there were 99 grid points in the wraparound
direction, 30 in the outward direction, and 36 along the blade span.
The second was a finer 139 × 50 × 36 grid. The contours of the
Mach number relative to the blade and the pressure as calculated
by the CFD solver are shown for both tip Mach numbers and both
CFD grids in Figs. 6–9.

For the tip Mach number of 0.85, it can be seen from the Mach-
number contours that the supersonic flow region and shock wave
are confined to being above/below the blade and do not extend sig-
nificantly beyond the blade tip. The pressure contours show subtle
changes on increasing the grid resolution, but both essentially reveal
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Fig. 5 Computed and experimental pressure coefficients: tapered HELISHAPE blade.

a) b)

Fig. 6 Contours of a) relative Mach number and b) pressure for MH = 0.85 and a 99 ×× 30 ×× 36 CFD grid.
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a) b)

Fig. 7 Contours of a) relative Mach number and b) pressure for MH = 0.85 and a 139 ×× 50 ×× 36 CFD grid.

a) b)

Fig. 8 Contours of a) relative Mach number and b) pressure for MH = 0.88 and a 99 ×× 30 ×× 36 CFD grid.

a) b)

Fig. 9 Contours of a) relative Mach number and b) pressure for MH = 0.88 and a 139 ×× 50 ×× 36 CFD grid.
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the same directionality of the aerodynamic pressure field. For the tip
Mach number of 0.88, it can be seen that the supersonic region and
hence shock wave do now extend beyond the blade tip. However,
they do not intersect the region of the flow, which is supersonic in
the frame in which the blade is stationary, meaning that the shock
is not delocalized. The pressure contours show minor differences
with grid resolution, but both reveal an aerodynamic pressure field
with a directionality that is slightly more pronounced than for the
tip Mach number of 0.85.

In hover, the inner part of the blade moves at substantially
smaller speeds than the outer part. Control surfaces that enclosed
only the outer part of the blade and the supersonic flow re-
gions could therefore be used. Examples of the control surfaces
used, in this case for the finer grid MH = 0.88 calculations, are
shown in Fig. 10. Beyond the blade tip, all pass between the
edge of the supersonic region and the radius at which their mo-
tion would become sonic. They thus enclose the transonic flow re-
gion while undergoing subsonic motion, allowing noise prediction
to be carried out via the retarded time formulation of the FW-H
equation.

The noise at an observer lying in the rotor plane a distance of
3.09 rotor radii from the axis of rotation was calculated by ap-
plying the permeable surface form of the FW-H equation to four

Fig. 10 Four permeable control surfaces and the supersonic flow
pocket at MH = 0.88 for the 139 ×× 50 ×× 36 CFD grid.

a) b)

Fig. 11 Nonlifting hover at MH = 0.85: one period of the predicted sound for an in-plane observer, r0/Rtip = 3.09, a) CFD grids of 99 ×× 30 ×× 36 and
b) 139 ×× 50 ×× 36.

different control surfaces for each test case. The innermost control
surface extended approximately half a chord beyond the blade lead-
ing and trailing edges and approximately 4.5% of the blade span
beyond the blade tip, while the outermost extended approximately
a chord beyond the blade leading and trailing edges and 9% be-
yond the blade tip. Because the blade position with respect to the
stationary observer was periodic at the blade rotation frequency,
the observer sound signature was also periodic. One period of the
signature for each of the tip Mach numbers is shown in Figs. 11
and 12.

For both rotor tip Mach numbers, the observer pressure signal
has the form of a large negative peak preceded and followed by
much smaller positive peaks, the characteristic signature of rotor
plane shock-associated noise.3,11,27,28,31 All four control surfaces are
seen to predict very similar results. The outermost control surface
(surface 4) has the largest maximum speed, and some slight errors
as a result of the need for a finer acoustic grid are observed in the
predictions for the hover tip Mach number of 0.88.

Experimental noise measurements in the vicinity of the nega-
tive pressure peaks exist,27−30 and by enlarging the scale of the
graphs around the negative pressure peak, as in Figs. 13–16, the
experimental and predicted results can be compared. The experi-
mental results were for a 1/7th-scale blade model, and so the time
axis has been scaled to correspond to a full-size blade. The con-
tributions from the loading and thickness noise are also included,
as well as their combined total in the form of a prediction based
on the blade surface. The difference between the total noise pre-
diction and the blade surface prediction is the shock-associated
noise.

It can be seen that for both tip Mach numbers the predicted and
experimental results are in good agreement, although the size of the
negative pressure peak is underpredicted by approximately 8% for
the tip Mach number of 0.85 and 14% for the tip Mach number of
0.88. In both cases, the largest contribution is from thickness noise,
with a smaller but substantial contribution from shock-associated
noise. The loading noise contribution is small; the blade is nonlifting,
and so all of the loading noise is associated with noncompactness
across the blade section and numerical drag. The predicted relative
sizes of the thickness, loading, and shock-associated noise contri-
butions are in agreement with previous work.3,28,31,32

Because the blade drag is likely to be significantly smaller for
the Euler-based predictions than the experiments, the correspond-
ing deficit in loading noise can go some way toward explaining the
underprediction of the negative pressure peaks. The larger difference
for the tip Mach number of 0.88 might be caused by the extreme
sensitivity to tip Mach number that occurs close to the onset of shock
delocalization; it was commented in Ref. 28 that the negative pres-
sure peak for the MH = 0.89 case is almost 25% larger than for the
MH = 0.88 case. Hence any small inaccuracy in the experimental
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a) b)

Fig. 12 Nonlifting hover at MH = 0.88: one period of the predicted sound for an in-plane observer, r0/Rtip = 3.09, a) CFD grids of 99 ×× 30 ×× 36 and
b) 139 ×× 50 ×× 36.

Fig. 13 Nonlifting hover at MH = 0.85: comparison of predictions and
experiment, CFD grid of 99 ×× 30 ×× 36.

Fig. 14 Nonlifting hover at MH = 0.85: comparison of predictions and
experiment, CFD grid of 139 ×× 50 ×× 36.

Mach number is likely to result in a much larger percentage devia-
tion in the size of the negative pressure peak. Other transonic noise
prediction methods have invariably also underpredicted the size of
the 0.88 tip Mach number negative pressure peak, adding weight to
this argument.9,27,28,32,33

The predictions from the four control surfaces are converged ev-
erywhere except in the immediate vicinity of the negative pressure
peak for the high-Mach-number case, where small discrepancies

Fig. 15 Nonlifting hover at MH = 0.88: comparison of predictions and
experiment, CFD grid of 99 ×× 30 ×× 36.

Fig. 16 Nonlifting hover at MH = 0.88: comparison of predictions and
experiment, CFD grid of 139 ×× 50 ×× 36.

exist. For the tip Mach number of 0.85, these discrepancies are al-
most insignificant, but for the tip Mach number of 0.88 they are
larger, showing that the predicted noise is more sensitive to control
surface location at this larger tip Mach number.

The predictions obtained using the two different CFD grid resolu-
tions are almost indistinguishable for the tip Mach number of 0.85,
suggesting that convergence with grid resolution has been obtained.
However, for the tip Mach number of 0.88, the predictions from the
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two grids are seen to differ in the region of the negative pressure
peak. The finer grid results in the capture of an increased amount
of shock-associated noise, which results in the size of the nega-
tive pressure peak being approximately 5% larger. The combined
contribution of thickness and loading noise is seen to be virtually
unaffected, although the loading noise is slightly reduced when us-
ing the finer grid, probably because the increased spatial resolution
results in reduced numerical drag.

These results confirm that when the flow around the blade is
transonic, shock-associated noise contributes significantly to the in-
plane negative pressure peak. The contribution increases with blade
tip Mach number. Accurate capture of the noise requires use of a
sufficiently fine spatial CFD grid and integration over a sufficiently
large permeable control surface. The required number of CFD grid
points and control surface size both increase with blade tip Mach
number.

The results obtained using the permeable surface form of the
FW-H equation are compared in Figs. 17 and 18 with recent re-
sults obtained using direct Euler CFD calculations,28 the Kirchhoff
method,3,5 and the impermeable surface form of the FW-H equa-

Fig. 17 Comparison of permeable FW-H noise predictions with those
from other methods for a nonlifting UH-1H blade in hover: MH = 0.85,
and r0/Rtip = 3.09.

Fig. 18 Comparison of permeable FW-H noise predictions with those
from other methods for a nonlifting UH-1H blade in hover: MH = 0.88,
and r0/Rtip = 3.09.

tion with the quadrupole term approximated.3 The results have been
scaled, where necessary, so that they apply to a full-sized UH-1H
blade.

The predictions obtained using the permeable surface form of
the FW-H equation compare favorably with those from the other
prediction methods. Furthermore, because they only require near-
field CFD data and surface integration, the approach is the most
computationally efficient.

Nonlifting Forward Flight

The noise-prediction method is now applied to the more chal-
lenging problem of forward flight. For comparison with avail-
able experimental results,27,34,35 a rectangular OLS blade mov-
ing at a constant forward-flight speed with a rotational tip Mach
number of 0.664, an advance ratio of 0.2605, and an advancing
tip Mach number of 0.837 was considered. The blade aspect ra-
tio was 9.22, and the blade was once again nonlifting to avoid
vorticity-associated noise. The coning and rotor disk tilt angles were
zero.

In forward flight, the blade tip speed varies throughout the rota-
tional cycle. In practice a supersonic flow pocket exists only during
the advancing part of the cycle. Using the azimuth convention of
ψ increasing in the direction of rotation and being equal to 90 deg
at the advancing position and 270 deg at the retreating position, a
supersonic flow region existed between azimuth angles of approxi-
mately ψ = 70 and 135 deg for the test case being considered. The
strongest shock occurred at ψ = 105 deg, and the Mach contours
for this position are shown in Fig. 19. A CFD grid of 139 × 30 × 36
was used.

For a hovering blade, rotating the location of an observer within
a horizontal plane while maintaining distance from the blade hub
results in a pressure variation that is identical except for a time shift.
This is not the case for forward flight; the observer sound signa-
ture depends on orientation within the horizontal plane as well as
distance from the blade hub. To gain an insight into the rotor plane
noise for this forward-flight test case, the sound at three observer
locations within the rotor plane was considered. All three observers
translated with the same forward-flight speed as the blade hub, such
that the distance between the rotation axis and the observers was
fixed at r0/Rtip = 3.44. The angle between the observer and the
downstream direction was varied as shown in Fig. 20. For the noise
predictions, four control surfaces that enclosed the supersonic re-
gion when at its largest were used. The innermost surface extended
approximately 15% of the blade chord beyond the leading and trail-
ing edges and 2.5% of the span beyond the blade tip, whereas the

Fig. 19 Contours of Mach-number relative to the blade for the upper
blade surface at ψ = 105 deg.
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Fig. 20 Observer locations in
the frame of the rotation axis.

Fig. 21 Forward-flight noise predictions for three rotor plane ob-
servers at r0/Rtip = 3.44.

Fig. 22 Comparison of the predicted noise with experimental data.

outermost extended aproximately 85% of the blade chord beyond
the leading and trailing edges and 10% of the span beyond the blade
tip.

Noise-prediction results for one period of the motion are shown in
Fig. 21 and are compared to experimental measurements27 in Fig. 22.
(It is not clear how flight-test results for a nonlifting blade were ob-
tained.) The azimuth angle of the blade when sound is received at
the observer ψ(t) is plotted on the x axis. This is equivalent to plot-

ting scaled observer time; it should be noted that ψ(t) is greater than
the azimuth angle corresponding to sound emission ψ(τ∗). Noise
predictions based on the blade surface are also included; because
the blade is nonlifting, these are essentially equal to the contribution
from blade thickness noise.

The general shape of the noise prediction is the same for all
three observers; a negative pressure peak is immediately preceded
and followed by a smaller positive peak. For each of the observers,
the predictions from the four control surfaces are in good agree-
ment, with the predictions from the outer two surfaces being almost
indistinguishable. This suggests that little extra shock-associated
noise could be captured by moving the control surface out fur-
ther. Once again, thickness noise is the main in-plane component,
with a significant additional amount caused by shock-associated
noise.

The predicted signatures are in very good agreement with those
from experiment, although there is a slight shift in the azimuth re-
sponse. The reason for this is unclear; although there is some ambi-
guity in Ref. 27 as to the advance ratio/advancing tip Mach-number
combination that has been used, noise predictions have been per-
formed for all possible combinations and confirm that the changes
are too subtle to explain the azimuth shift. One possibility is that in-
plane bending, known as lead-lag motion, occurs in the experiments
and is responsible. The sizes of the negative pressure peaks are un-
derpredicted by approximately 10%, although again this might be
partially caused by the loading noise deficit associated with using
an Euler CFD code.

For both the predicted and experimental results, the peak response
occurs somewhere between the −30- and 0-deg observer stations.
This corresponds to a location upstream of the advancing rotor blade.
At this location, the Doppler factor 1/|1 − Mr | is large, and the
radiation vector magnitude r small when the blade speed and shock
strength are large; these effects amplify the noise.

Lifting Forward Flight
Noise predictions were now carried out for lifting rotors in for-

ward flight. Two rotors were considered, each composed of four
identical blades of radius of 2.1 m and aspect ratio 15. The first
rotor was composed of rectangular blades consisting of a spanwise
blend of OA213 and OA219 Boeing airfoils; the second was com-
posed of tapered blades with the same spanwise blend of airfoils
but with a different geometrical twist, such that the blade tips were
slightly swept back and drooped.

For each of the rotors, a different combination of rotational tip
Mach number MH , advance ratio µ, effective rotor disk tilt angle εeff,
and pitch variation α(t) was considered, as summarized in Table 1.
The forward flight and advancing tip Mach numbers are denoted
by M f and Ma , respectively. The pitch angle of the blades varied
cyclically about the 1

4 -chord axis as a function of blade azimuth
angle and was always negative to give upward lift. The blade cone
angle was taken to be zero, as indicated in the experimental data,
and second-order harmonic flap angles were neglected.

It is clear that the flight parameters for the two cases are very
similar, with the advancing tip Mach number differing by less than
0.5%. In both cases, the advancing tip Mach number is sufficiently
high so that a shock wave forms above the outer part of the blade
during the advancing part of the cycle. The CFD calculations were
performed on a 127 × 30 × 36 grid; the pressure contours for the
advancing positions are shown in Fig. 23.

For each rotor, the sound at two observers was considered. Both
observers translated at the rotor forward-flight speed and were thus
fixed with respect to the rotor hub. Such observers are equivalent
to stationary microphones within a wind-tunnel, allowing the noise

Table 1 Parameters for the two HELISHAPE test cases

Blade shape MH µ M f Ma εeff, deg αav, deg

Rectangular 0.662 0.331 0.219 0.881 4.81 −7.61
Tapered 0.660 0.328 0.216 0.877 5.10 −7.75
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a) b)

Fig. 23 Pressure contours for the advancing position of the a) rectangular and b) tapered blades.

Fig. 24 Coordinate system for forward flight.

predictions and wind-tunnel measurements to be directly compared.
It was assumed that the wind-tunnel boundaries were sufficiently
far from the rotor for their effect on the measurements to be
negligible.

The observer coordinates were (−5.27, −2.28, 2.69) for observer
1 and (−5.27, −2.28, 2.15) for observer 2, where a coordinate sys-
tem that translates with the rotor hub and uses the convention shown
in Fig. 24 was used.

Noise prediction was again carried out using several control sur-
faces. For the rectangular blades, the innermost control surface ex-
tended approximately a chord beyond the leading and trailing edges
of the blade and 6.5% of the blade span beyond the blade tip, while
the outermost extended approximately two chords beyond the lead-
ing and trailing edges and 13% beyond the blade tip. For the ta-
pered blades, the innermost surface extended approximately 0.65 of
a chord beyond the leading and trailing edges and 5% of the blade
span beyond the blade tip, while the outermost extended approxi-
mately two chords beyond the leading and trailing edges and 14%
beyond the blade tip.

Because the observers translated at the rotor forward-flight speed,
the behavior of each blade relative to the observer was identical
except for phase shift or time delay. Noise prediction was there-
fore carried out for a single rotating blade, and the results were
time delayed and summed to obtain the noise prediction for all four
blades.

The predictions were compared to measurements from equivalent
wind-tunnel test cases. Because the rotor blades were lifting, the
comparisons were complicated by the presence of vortex-induced
loading noise in the measurements, which could not be accounted

for in the predictions as a result of the use of an Euler CFD solver.
Some discrepancy between the predicted and measured noise was
therefore expected.

The results are shown in Figs. 25 and 26. The observer pressure
fluctuations are plotted against nondimensionalized time for one
period of the rotor motion. The starting time for the experimen-
tal results is arbitrary, and hence a phase difference between the
experimental and measured results is expected.

Both the experimental and predicted pressure variations consist
of four equally spaced negative pressure peaks, corresponding to the
advancing phase of the cycle for each of the four blades. The peaks
are separated by regions of positive pressure at low levels, in which
a proportionally larger amount of the measured noise is likely to be
contaminated by effects such as vortex-induced loading noise.

For both cases, the magnitude of the negative pressure peaks is
slightly larger for observer 2 than for observer 1. This is because
the z coordinates of the observer positions are 2.69 and 2.15 m,
respectively, with the blade radius being 2.1 m. Observer 2 is closer
to being directly upstream of the advancing position, meaning that
the amplification effects of the Doppler factor and radiation vector
are larger.

Despite the fact that the flight condition parameters are very sim-
ilar for both rotors, the noise levels differ significantly; they are
approximately 35% smaller for the rotor with tapered blades. This
is primarily because of differences in the shock-associated noise
as the thickness and loading contributions are similar. The differ-
ence is likely to be associated with the blade shape. Whereas the
rectangular blade is unswept, the tapered blade is slightly swept
back and drooped at the tip. Sweep serves to reduce the flow Mach
number relative to the blade. It therefore follows that the strength
of the shock and the shock-associated noise are reduced, an ef-
fect that has been observed in the past.36 The extent of the super-
sonic region is clearly seen to be smaller for the tapered blade in
Fig. 23.

The predicted magnitudes of the negative pressure peaks are ap-
proximately 20% less than the measured. However, the predictions
from the different control surfaces are converged, suggesting that
little extra real quadrupole noise could be captured by further en-
larging the control surface. The differences are therefore likely
to be caused by physical effects, such as vortex-induced loading
noise, which are not accounted for in the noise predictions, the
drag deficit associated with the Euler CFD code and CFD grid
coarseness.
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Fig. 25 Observer noise for 1 period of rotor motion, rectangular blades.

Fig. 26 Observer noise for 1 period of rotor motion, tapered blades.

Conclusions
The permeable form of the Ffowcs Williams–Hawkings (FW-

H) equation has been used to predict transonic rotor noise with
much less computational effort than has previously been possible.
The methodology involved applying the FW-H equation to control
surfaces that were very small while enclosing both the blade and all
transonic flow regions. Such a choice of control surface ensured that
the quadrupole term in the FW-H equation was negligible and meant
that an accurate computational-fluid-dynamics (CFD) solution was
required only in the vicinity of the blade. This methodology also
allowed physical insight into the noise generation to be retained.

Noise predictions for both hover and forward-flight test cases
were obtained by using an Euler-based CFD method to calculate
the flow variables on the control surface. The permeable surface
form of the FW-H equation (the retarded time formulation with the
quadrupole term neglected) was then used to calculate the propa-

gation of sound from the control surface to the observer. The noise
predictions showed very good agreement with experimental results,
validating the methodology.
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